skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harris, Fred"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Acoustic feedback control continues to be a challenging prob- lem due to the emerging form factors in advanced hearing aids (HAs) and hearables. In this paper, we present a novel use of well-known all-pass filters in a network to perform frequency warping that we call “freping.” Freping helps in breaking the Nyquist stability criterion and improves adaptive feedback can- cellation (AFC). Based on informal subjective assessments, dis- tortions due to freping are fairly benign. While common ob- jective metrics like the perceptual evaluation of speech quality (PESQ) and the hearing-aid speech quality index (HASQI) may not adequately capture distortions due to freping and acoustic feedback artifacts from a perceptual perspective, they are still instructive in assessing the proposed method. We demonstrate quality improvements with freping for a basic AFC (PESQ: 2.56 to 3.52 and HASQI: 0.65 to 0.78) at a gain setting of 20; and an advanced AFC (PESQ: 2.75 to 3.17 and HASQI: 0.66 to 0.73) for a gain of 30. From our investigations, freping provides larger improvement for basic AFC, but still improves overall system performance for many AFC approaches. 
    more » « less